sciPy stats.zscore()函数| Python
原文:https://www.geesforgeks.org/scipy-stats-zs core-function-python/
scipy.stats.zscore(arr,axis=0,ddof=0) 函数计算输入数据相对于样本平均值和标准偏差的相对 Z 分数。
其公式:
参数: arr : 【类数组】输入要计算 Z 分数的数组或对象。 轴:计算平均值的轴。默认情况下,轴= 0。 ddof : 标准差的自由度修正。
结果:输入数据的 Z 评分。
代码#1:工作
# stats.zscore() method
import numpy as np
from scipy import stats
arr1 = [[20, 2, 7, 1, 34],
[50, 12, 12, 34, 4]]
arr2 = [[50, 12, 12, 34, 4],
[12, 11, 10, 34, 21]]
print ("\narr1 : ", arr1)
print ("\narr2 : ", arr2)
print ("\nZ-score for arr1 : \n", stats.zscore(arr1))
print ("\nZ-score for arr1 : \n", stats.zscore(arr1, axis = 1))
输出:
arr1 : [[20, 2, 7, 1, 34], [50, 12, 12, 34, 4]]
arr2 : [[50, 12, 12, 34, 4], [12, 11, 10, 34, 21]]
Z-score for arr1 :
[[-1\. -1\. -1\. -1\. 1.]
[ 1\. 1\. 1\. 1\. -1.]]
Z-score for arr1 :
[[ 0.57251144 -0.85876716 -0.46118977 -0.93828264 1.68572813]
[ 1.62005758 -0.61045648 -0.61045648 0.68089376 -1.08003838]]
代码#2 : Z 评分
import numpy as np
from scipy import stats
arr2 = [[50, 12, 12, 34, 4],
[12, 11, 10, 34, 21]]
print ("\nZ-score for arr2 : \n", stats.zscore(arr2, axis = 0))
print ("\nZ-score for arr2 : \n", stats.zscore(arr2, axis = 1))
输出:
Z-score for arr2 :
[[ 1\. 1\. 1\. nan -1.]
[-1\. -1\. -1\. nan 1.]]
Z-score for arr2 :
[[ 1.62005758 -0.61045648 -0.61045648 0.68089376 -1.08003838]
[-0.61601725 -0.72602033 -0.83602341 1.80405051 0.37401047]]