跳转至

sciPy stats.tmax()函数| Python

原文:https://www.geesforgeks.org/scipy-stats-tmax-function-python/

**scipy.stats.tmax(array, lowerlimit=None, axis=0, inclusive=True)**函数沿指定轴计算数组元素的修剪最大值,同时忽略指定限制之外的值。

参数: 数组:输入数组或对象中具有计算修剪后最大值的元素。 轴:轴,统计数据将沿着该轴计算。默认轴= 0 限制:考虑数组的下限和上限,小于下限或大于上限的值将被忽略。如果限制为无[默认值],则使用所有值。 包含:决定是包含等于下限还是上限的值,还是在计算时将其排除。

返回:根据设置的参数,修剪数组元素的最大值。

代码#1:

# Trimmed Maximum 

from scipy import stats
import numpy as np 

# array elements ranging from 0 to 19
x = [1, 3, 27, 56, 2, 4, 13, 3, 6]

print("Trimmed Maximum :", stats.tmax(x)) 

print("\nTrimmed Maximum by setting limit : ", 
      stats.tmax(x, (5)))

Output:

Trimmed Maximum : 56

Trimmed Maximum by setting limit :  4

代码#2: 多维数据

# Trimmed Maximum 

from scipy import stats
import numpy as np 

# array elements ranging from 0 to 19
x = [[1, 3, 27], 
        [3, 4, 7], 
        [7, 6, 3], 
        [3, 6, 8]]

print("Trimmed Maximum :", stats.tmax(x)) 

# setting axis
print("\nTrimmed Maximum by setting axis : ", 
      stats.tmax(x, axis = 1))

print("\nTrimmed Maximum by setting axis : ", 
      stats.tmax(x, axis = 0))

# setting limit
print("\nTrimmed Maximum by setting limit : ", 
      stats.tmax(x, (5), axis = 1))

print("\nTrimmed Maximum by setting limit : ", 
      stats.tmax(x, (5), axis = 0))

Output:

Trimmed Maximum : [ 7  6 27]

Trimmed Maximum by setting axis :  [27  7  7  8]

Trimmed Maximum by setting axis :  [ 7  6 27]

Trimmed Maximum by setting limit :  [3 4 3 3]

Trimmed Maximum by setting limit :  [3 4 3]



回到顶部