跳转至

sciPy stats.signaltonoise()函数| Python

原文:https://www.geesforgeks.org/scipy-stats-signal tonoise-function-python/

scipy . stats . signal tonoise(arr,axis=0,ddof=0) 函数计算输入数据的信噪比。

其公式:

参数: arr:【array _ like】输入具有计算信噪比元素的数组或对象 轴:计算平均值的轴。默认情况下,轴= 0。 ddof : 标准差的自由度修正。

结果:均值与标准差之比,即信噪比。

代码#1: 工作

# stats.signaltonoise() method 
import numpy as np
from scipy import stats

arr1 = [[20, 2, 7, 1, 34],
        [50, 12, 12, 34, 4]]

arr2 = [50, 12, 12, 34, 4]

print ("\narr1 : ", arr1)
print ("\narr2 : ", arr2)

print ("\nsignaltonoise ratio for arr1 : ", 
       stats.signaltonoise(arr1, axis = 0, ddof = 0))

print ("\nsignaltonoise ratio for arr1 : ", 
       stats.signaltonoise(arr1, axis = 1, ddof = 0))

print ("\nsignaltonoise ratio for arr1 : ", 
       stats.signaltonoise(arr2, axis = 0, ddof = 0)) 

输出:

arr1 : [[20,2,7,1,34],[50,12,12,34,4]]

arr2 : [50,12,12,34,4]

arr1 的信噪比:[2.33333333 1.4 3.8 1.06060606 1.26666667]

arr1 的信号噪声比:[1.01779811]1.3142934

arr2 的信号噪声比:1 58860 . 88888888861

代码#2 : 如何实现

def signaltonoise(a, axis, ddof):
    a = np.asanyarray(a)
    m = a.mean(axis)
    sd = a.std(axis = axis, ddof = ddof)
    return np.where(sd == 0, 0, m / sd)

print ("\nsignaltonoise ratio for arr1 : ", 
       signaltonoise(arr1, axis = 0, ddof = 0))

print ("\nsignaltonoise ratio for arr1 : ", 
       signaltonoise(arr1, axis = 1, ddof = 0))

print ("\nsignaltonoise ratio for arr2 : ", 
       signaltonoise(arr2, axis = 0, ddof = 0))

输出:

arr1 的信噪比:[2.33333333 1.4 3.8 1.06060606 1.26666667]

arr1 的信号噪声比:[1.01779811]1.3142934

arr2 的信号噪声比:1 58860 . 88888888861



回到顶部