sciPy stats.sem()函数| Python
原文:https://www.geesforgeks.org/scipy-stats-SEM-function-python/
scipy.stats.sem(arr,axis=0,ddof=0) 函数用于计算输入数据平均值的标准误差。
参数: arr:【array _ like】输入具有计算标准误差的元素的数组或对象。 轴:计算平均值的轴。默认情况下,轴= 0。 ddof : 标准差的自由度修正。
结果:输入数据平均值的标准误差。
示例:
# stats.sem() method
import numpy as np
from scipy import stats
arr1 = [[20, 2, 7, 1, 34],
[50, 12, 12, 34, 4]]
arr2 = [50, 12, 12, 34, 4]
print ("\narr1 : ", arr1)
print ("\narr2 : ", arr2)
print ("\nsem ratio for arr1 : ",
stats.sem(arr1, axis = 0, ddof = 0))
print ("\nsem ratio for arr1 : ",
stats.sem(arr1, axis = 1, ddof = 0))
print ("\nsem ratio for arr1 : ",
stats.sem(arr2, axis = 0, ddof = 0))
输出:
arr1 : [[20, 2, 7, 1, 34], [50, 12, 12, 34, 4]]
arr2 : [50, 12, 12, 34, 4]
sem ratio for arr1 : [10.60660172 3.53553391 1.76776695 11.66726189 10.60660172]
sem ratio for arr1 : [5.62423328 7.61892381]
sem ratio for arr1 : 7.618923808517841