sciPy stats . description()函数| Python
原文:https://www.geesforgeks.org/scipy-stats-description-function-python/
**scipy.stats.describe(array, axis=0)**
计算沿数组指定轴传递的数组元素的描述性统计。
参数: 数组:输入数组或有元素的对象进行统计计算。 轴:轴,统计数据将沿着该轴计算。默认情况下,轴= 0。
返回:根据设置的参数统计数组元素。
代码#1:
# FInding statistics of data
from scipy import stats
arr1 = [9, 3, 27]
desc = stats.describe(arr1)
print("No. of observations is :\n", desc)
Output:
观测数为: descripteresult(nobs = 3,minmax=(3,27),均值=13.0,方差=156.0,偏斜度=0.5280049792181878,峰度=-1.5)
代码#2: 有多维数据
# FInding statistics of data
from scipy import stats
arr1 = [[1, 3, 27],
[3, 4, 6],
[7, 6, 3],
[3, 6, 8]]
desc = stats.describe(arr1, axis = 0)
print("No. of observations at axis = 0 :\n\n", desc)
print("\n\nNo. of observations at axis = 1 :\n\n", desc)
Output:
轴上的观察次数= 0:
descripteresult(nobs = 4,minmax=(array([1,3,3]),array([ 7,6,27])),mean=array([ 3.5,4.75,11。]),方差=数组([ 6.33333333,2.25,118。]),偏斜度=数组([ 0.65202366,-0.21383343,1.03055786]),峰度=数组([-0.90304709,-1.72016461,-0.75485971])
轴上的观察次数= 1:
descripteresult(nobs = 4,minmax=(array([1,3,3]),array([ 7,6,27])),mean=array([ 3.5,4.75,11。]),方差=数组([ 6.33333333,2.25,118。]),偏斜度=数组([ 0.65202366,-0.21383343,1.03055786]),峰度=数组([-0.90304709,-1.72016461,-0.75485971])