跳转至

使用 Scipy–Python 中的低通数字巴特沃斯滤波器去除噪声

原文:https://www.geesforgeks.org/去噪-使用-低通-数字-巴特沃斯-滤波器-in-scipy-python/

在本文中,任务是编写一个 Python 程序,使用低通数字巴特沃斯滤波器去除噪声。

什么是噪音?

噪声基本上是电子信号中不需要的部分。它通常是由于设计故障、连接松动、开关故障等原因而产生的。

信号中有噪音怎么办?

为了消除不想要的信号/噪声,我们使用不同类型和规格的滤波器。一般来说,在行业中,我们需要通过信号测试来选择最佳匹配,以确定在给定的使用情况下用于消除噪声的最佳滤波器。

我们现在要做什么?

我们现在要实现一个低通数字巴特沃兹滤波器来去除正弦波组合中不需要的信号/噪声。

过滤器规格:

  • 信号由 25 Hz 和 50 Hz 组成
  • 采样频率 1kHz。
  • 在 35Hz 下订购 N=10,以消除 50Hz 音调。

逐步逼近:

步骤 1: 导入库

蟒蛇 3

# import required library
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

步骤 2: 定义规格

蟒蛇 3

# Specifications of the filter
f1 = 25  # Frequency of 1st signal
f2 = 50  # Frequency of 2nd signal
N = 10  # Order of the filter

# Generate the time vector of 1 sec duration
t = np.linspace(0, 1, 1000)  # Generate 1000 samples in 1 sec

# Generate the signal containing f1 and f2
sig = np.sin(2*np.pi*f1*t) + np.sin(2*np.pi*f2*t)

步骤 3: 用噪声绘制原始信号

蟒蛇 3

# Display the signal
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(t, sig)
ax1.set_title('25 Hz and 50 Hz sinusoids')
ax1.axis([0, 1, -2, 2])

# Design the Butterworth filter using 
# signal.butter and output='sos'
sos = signal.butter(50, 35, 'lp', fs=1000, output='sos')

输出:

步骤 4: 去除噪声后的信号图

蟒蛇 3

# Filter the signal by the filter using signal.sosfilt
# Use signal.sosfiltfilt to get output inphase with input
filtered = signal.sosfiltfilt(sos, sig)

# Display the output signal
ax2.plot(t, filtered)
ax2.set_title('After 35 Hz Low-pass filter')
ax2.axis([0, 1, -2, 2])
ax2.set_xlabel('Time [seconds]')
plt.tight_layout()
plt.show()

输出:

第五步:实施

蟒蛇 3

# import required library
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

# Given
f1 = 25  # Frequency of 1st signal
f2 = 50  # Frequency of 2nd signal
N = 10  # Order of the filter

# Generate the time vector of 1 sec duration
# START CODE HERE ### (≈ 1 line of code)
# Generate 1000 samples in 1 sec
t = np.linspace(0, 1, 1000)

# Generate the signal containing f1 and f2
# START CODE HERE ### (≈ 1 line of code)
sig = np.sin(2*np.pi*f1*t) + np.sin(2*np.pi*f2*t)

# Display the signal
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(t, sig)
ax1.set_title('25 Hz and 50 Hz sinusoids')
ax1.axis([0, 1, -2, 2])

# Design the Butterworth filter using signal.butter and output='sos'
# START CODE HERE ### (≈ 1 line of code)
sos = signal.butter(50, 35, 'lp', fs=1000, output='sos')

# Filter the signal by the filter using signal.sosfilt
# START CODE HERE ### (≈ 1 line of code)
# Use signal.sosfiltfilt to get output inphase with input
filtered = signal.sosfiltfilt(sos, sig)

# Display the output signal
ax2.plot(t, filtered)
ax2.set_title('After 35 Hz Low-pass filter')
ax2.axis([0, 1, -2, 2])
ax2.set_xlabel('Time [seconds]')
plt.tight_layout()
plt.show()

输出:



回到顶部